
Nonlinear electrodynamics of electrons in a quasi-one-dimensional ballistic ring

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys. A: Math. Gen. 33 6017

(http://iopscience.iop.org/0305-4470/33/34/307)

Download details:

IP Address: 171.66.16.123

The article was downloaded on 02/06/2010 at 08:30

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/33/34
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 33 (2000) 6017–6022. Printed in the UK PII: S0305-4470(00)10673-0

Nonlinear electrodynamics of electrons in a
quasi-one-dimensional ballistic ring

E M Epshtein†, G M Shmelev‡ and I I Maglevanny‡
† Institute for Radioengineering and Electronics, Russian Academy of Sciences, Vvedenskii
Square, 1 Fryazino, Moscow district, 141190 Russia
‡ Volgograd State Pedagogical University, 27 pr. Lenina, Volgograd, 400013 Russia

Received 23 December 1998, in final form 9 June 2000

Abstract. We consider ballistic electron motion in a quasi-one-dimensional ring under the
uniform high-frequency electric field induced by an electromagnetic field. The electron satisfies a
nonlinear equation of motion which is formally identical to that for a pendulum with a vibrating
suspension point. The averaging method of Kapitza is used. The electromagnetic emission
spectrum is calculated. The spectrum consists of low-frequency radiation, scattered radiation at the
incident radiation frequency and combination scattered radiation; the intensities and frequencies
of all components depend nonlinearly on the incident radiation frequency. At a certain value of
that intensity the spontaneous symmetry breakdown occurs. As a result, the system acquires some
static electric dipole moment.

There are many papers devoted to the effects in quasi-one-dimensional rings. Various quantum
phenomena are mainly considered, such as quantum confinement, the Aharonov–Bohm effect,
Coulomb blockade, etc. In this paper we pay attention to the possibility of some interesting
classical effects in quasi-one-dimensional ballistic rings under applied fields.

Consider a ballistic ring (the electron mean free path exceeds the ring circumference)
of radius R under a uniform high-frequency electric field induced by a plane polarized
electromagnetic wave that propagates along the normal to the ring plane. In the spatially
uniform electric field of the wave, �F(t) = �F0 cosωt affects electrons in the ring. However,
electrons can only move along the ring circumference, so that the driving force �f (φ, t) =
{eF0 cosωt cosφ, eF0 cosωt sin φ} (φ is the angular coordinate counting of the line parallel
to the wave field) depends nonlinearly on the electron position in the ring, i.e. a ‘geometrical
nonlinearity’ takes place. Electron motion in the ring is described by the nonlinear equation

d2φ

dt2
+ ω2

0 cosωt sin φ = 0 ω0 =
√
eF0

mR
eF0 > 0 (1)

(e < 0 and m are the electron charge and effective mass, respectively). A mechanical analogue
of the problem is a pendulum in the horizontal plane whose vertical suspension axis vibrates
along a horizontal line; such a system was investigated by Kapitza half a century ago [1].
Note also that equation (1) has a form of (one-dimensional) equation of electron motion in a
non-homogeneous electric field of the standing electromagnetic wave. For the case of a highly
oscillating field this equation was investigated in [2, 3] by Kapitza’s averaging method [1, 4].

It follows from the nonlinearity of equation (1) that electrons in the ballistic ring
form a system with nonlinear electrodynamical (optical) properties even if the ring is
electrodynamically linear per se. We consider some of the nonlinear effects below.
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In this paper we consider the case of the field �F(t) highly oscillating with a high frequency
ω, and carry out the averaging of the solution of equation (1) over the period 2π/ω by Kapitza’s
averaging method. The high-frequency condition is ω � 1/T0, where T0 is the typical time
of slow dynamics of averaged motion.

Following [1–3] we present the function φ(t) in the form

φ(t) = φ̄(t) + φ̃(t) (2)

where φ̄(t) is a slowly changing (with respect to time) function and φ̃(t) is highly oscillating
(with frequency ω). Substituting (2) into (1) and expanding in a series of φ̃ we get

d2φ̄

dt2
+

d2φ̃

dt2
+ ω2

0 sin φ̄ cosωt + ω2
0φ̃ cos φ̄ cosωt = 0. (3)

Here the last term is small because of the smallness of φ̃(t) (as far as the second derivative
d2φ̃/dt2 is concerned, it is proportional to the large value ω2 and is therefore not small). Thus,
from equation (3) we get the ‘fast’ component of motion

φ̃ =
(ω0

ω

)2
sin φ̄ cosωt. (4)

Substituting (4) into (3) and averaging over time (considering that the functions sin φ̄ and
cos φ̄ are constant), we get

d2φ̄

dt2
+ γ 2 sin φ̄ cos φ̄ = 0

(
γ = ω2

0√
2ω

= eF 2
0√

2mRω
	 ω0 	 ω

)
. (5)

Note that the second term in (5) is the analogue of the so-called Miller force [2, 3].

With initial conditions φ̄(0) = 0 and dφ̄
dt (0) = � ≡ 1

R

√
2E
m

(E is the electron energy),
equation (5) has the solution

sin φ̄(t) =



αsn(γ t, α) E0 > E

sn(αγ t, α−1) E0 < E

tanh(γ t) E0 = E

(6)

where α = �/γ = √
E/E0, E0 = e2F 2

0 /4mω2 and sn(x, k) is the Jacobi elliptic sine with
module k.

The low-frequency electric dipole moment of the ring that contains an electron and smeared
compensating charge (the jellium model) has the form

�p(t) = eR{cos φ̄, sin φ̄} =



eR{±dn(γ t, α), αsn(γ t, α)} E0 > E

eR{±cn(αγ t, α−1), sn(αγ t, α−1)} E0 < E

eR{sech(γ t), tanh(γ t)} E0 = E

(7)

where cn(x, k) and dn(x, k) are the elliptic cosine and delta amplitude with module k,
respectively.

First we consider the electrostatic properties of the system by averaging over the low-
frequency motion, i.e. we take the zeroth harmonic of the Fourier series for equations (7). We
then have

�p0 = eR

{
± π

2K(α)
, 0

}
at E0 > E and �p0 = 0 at E0 < E (8)

where K(k) is the complete elliptic integral of the first kind with module k.
It follows from equation (8) that a bifurcation takes place at E0 = E. As a result, a system

acquires an electric dipole moment. The effect has a simple interpretation. In the presence
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of the high-frequency field, electron motion averaged over the fast oscillations occurs in an
effective two-well potential with minima at φ = 0 and φ = π and a barrier of height E0

between them (cf [1]). At E0 < E the electron energy exceeds the height of the barrier
between wells so that the electron now moves over the barrier. At E0 > E the electron falls
into one of the wells and cannot escape, so that at E0 = E spontaneous symmetry breakdown
takes place and a nonzero electric dipole moment appears (optical rectification). This effect is
analogous to the appearance of spontaneous polarization at a ferroelectric second-order phase
transition with dipole moment �p0 as an order parameter and the electric field F0 as a control
parameter.

Now, consider the time-dependent response of the ring to an electromagnetic wave. It is
known [5] that, in the scattering of the electromagnetic wave by a nonrelativistic free electron
in the dipole approximation, the scattered radiation has the same frequency as the incident
radiation. The above-mentioned ‘geometrical nonlinearity’ of the ‘electron in the ballistic
ring’ system leads to the appearance of a low-frequency response at the frequency of electron
oscillations, resulting in a two-well potential and higher harmonics, as well as a high-frequency
response at the frequency of the external field and combination frequencies that are created
from addition or subtraction of the external field frequency with the low-frequency harmonics.

The electron dipole radiation spectrum is related to the Fourier coefficients of the dipole
moment �p(t) = ∑∞

n=0(�an cos nνt + �bn sin nνt) by the formula [5]

J̄n = 1

3c3
n4ν4(�a2

n + �b2
n) (n = 1, 2, 3, . . .) (9)

where c is the velocity of light and J̄n is the radiation intensity at the nth harmonic frequency.
Using the known formulae for the Fourier expansion of the Jacobi functions [6] we obtain

from equations (7) and (9) the following results for the low-frequency part of the scattering
spectrum.

The fundamental frequency of the low-frequency radiation is equal to

ν =




πγ

2K(α)
E0 > E

πγα

2K(α−1)
E0 < E

(10)

and tends to 0 at E → E0.
At E0 > E the intensities of the odd and even harmonics of that frequency have the

following forms, respectively:

J̄(2n−1)ν = π6e2R2γ 4

12c3K6(α)

(2n − 1)4q2n−1

(1 − q2n−1)2
(11)

J̄2nν = π6e2R2γ 4

12c3K6(α)

(2n)4q2n

(1 + q2n)2
. (12)

At E0 < E the even harmonics are absent and the intensities of the odd ones have the
form

J̄(2n−1)ν = π6e2R2γ 4α6

6c3K6(α−1)

(2n − 1)4q2n−1(1 + q4n−2)

(1 − q4n−2)2
. (13)

In formulae (11)–(13) the value q = q(α) is defined by

q =




exp

(
−πK ′(α)

K(α)

)
E0 > E

exp

(
−πK ′(α−1)

K(α−1)

)
E0 < E

(14)
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Figure 1. Dependence of the dipole emission intensity J̄sν/J0 (J0 = e2R2γ 4/3c3) on the parameter
1/α2 = E0/E. The curves correspond to the numbers of the harmonics: (1) s = 1; (2) s = 2;
(3) s = 3.

where K ′(k) ≡ K(k′), k′ = √
1 − k2. Note that

lim
E→E0

q(α) = 1 lim
E→E0

J̄nν(α) = 0. (15)

The dependence of the dipole emission intensity on the incident radiation intensity is
shown in figure 1.

The even harmonics in the scattering spectrum at E0 > E have the same origin as the
above-mentioned static dipole moment.

The evolution of the low-frequency dipole radiation of the electron in the ballistic ring
with increase in the incident radiation intensity is described by equations (10)–(14) and has
the following form.

At low intensities (E0 < E) increasing the intensity leads to thickening of the discrete
spectrum and an increase in the intensity of the odd higher harmonics. AtE0 = E the spectrum
becomes continuous. With further increases in the incident radiation intensity (E0 > E) an
opposite process occurs, i.e. thinning the discrete spectrum and decreasing intensity of the odd
higher harmonics. In the limiting case E 	 E0 the fundamental frequency coincides with the
small oscillation frequency γ in one of the effective potential wells. The radiation intensity at
this frequency is then equal to

Jν = Jγ = e4EF 2
0

3c3m3R2ω2
. (16)

From equations (4) and (9) we obtain the spectral intensities for the high-frequency
radiation. It is convenient to represent them in the form of the corresponding scattering cross
sections, σ = J/(cF 2

0 /8π). The cross section at the incident radiation frequency is given by

σω =



σT

[
1 − E(α)

K(α)

]2

E0 > E

σT · α4

[
1 − E(α−1)

K(α−1)

]2

E0 < E.

(17)
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Figure 2. Dependence of the scattering cross section σω±sν/σT on the parameter 1/α2 = E0/E.
The curves correspond to the number of the harmonics: (1) s = 0; (2) s = 1; (3) s = 2; (4) s = 3.

Here σT = 8πe4/3m2c4 is the Thomson scattering cross section and E(k) is the complete
elliptic integral of the second kind with module k.

At E0 > E the scattering cross sections at combination frequencies are

σω±(2n−1)ν = σT · π4

2K4(α)

(2n − 1)2q2n−1

(1 + q2n−1)2
(18)

σω±2nν = σT · π4

2K4(α)

(2n)2q2n

(1 − q2n)2
. (19)

At E0 < E the odd harmonics are absent and the even ones are

σω±2nν = σT · π4α4

K4(α−1)

(2n)2q2n(1 + q4n)

(1 − q4n)2
. (20)

The intensity dependence of the scattering cross sections is shown in figure 2. Note
that different points of the curves correspond to different combination frequencies ω ± nν,
depending on α. Note that

lim
E→E0

σω(α) = σT lim
E→E0

σω±nν(α) = 0. (21)

Thus the following phenomena arise under geometric nonlinearity conditions:

(1) low-frequency emission with frequencies and intensities dependent on the incident
radiation intensity;

(2) nonlinear coherent scattering with intensity-dependent cross section;

(3) stimulated combination (Raman) scattering with the satellite line positions and intensities
that depend on the incident radiation intensity in a nonlinear way.
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The total scattering cross section is given by

σ =



σT

[
1 − E(α)

K(α)

]
E0 > E

σT · α2

[
1 − E(α−1)

K(α−1)

]
E0 < E.

(22)

Up to this point, we have assumed that there is one electron in the ring. If N electrons
with energy E are injected pointwise into the ring then a factor N2 needs to be introduced
into equations (11)–(13) and (16)–(20) for the radiation intensity and spectra, respectively.
If the electron gas in the ring is degenerate then the energy E has the meaning of the Fermi
energy. The Coulomb interaction between electrons may be neglected, on the condition that
γ � ωp, where ωp is the plasma frequency for electrons in the ring (the calculation of ωp will
be published elsewhere).

Instead of the pointwise injection, the following contactless procedure may be proposed.
First, without an electromagnetic field, a uniform constant electric field F is applied (e.g. by
means of a parallel-plate capacitor) that is parallel to the future direction of the electromagnetic
wave field and satisfies the condition F � E/2eR. Constant-field polarization of the electron
gas in the ring ensures that the initial condition φ(0) = 0 for all the electrons is fulfilled. Then
the electromagnetic field is turned on, which corresponds to the required value of the parameter
α, and the polarizing constant field is turned off.

If the electrons in the ring are nonmonoenergetic the spectral line broadening due to
electron energy spread is expected.

At E0 > E, N electrons are distributed between two potential wells of the effective
potential. If N is odd then the electrons cannot divide equally and the ring has an electric
dipole moment. At E 	 E0 the moment is equal to eR. On the other hand, if N is even the
dipole moment may or may not differ from zero. If one performs measurements on such a ring
many times with the electromagnetic field being turned on and off, then the dipole moment
averaged over many measurements vanishes and the standard deviation is equal to 1

2 |e|R√
N .

In addition, the ring has an electric quadrupole moment of the order of NeR2. If the electrons
are distributed equally between two wells under even N , so that the dipole moment is equal to
zero, then the quadrupole moment tensor has components Dxx = −Dyy = 3

2NeR2, Dzz = 0
(the ring lies in the xy plane with the x axis parallel to the electric field).

The static effects in question may be classified as the single-electron phenomena in which
the system behaviour depends on the electron number in the system and parity effects.
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